By browsing our site you agree to our use of cookies. You will only see this message once.  Find out more
Przeglądając naszą stronę zgadzasz się na użycie cookies. Zobaczysz tą wiadomość tylko raz.  Dowiedz się więcej

3rd International Conference on Information Technologies in Management

Warsaw, Poland, 26 January 2018

You are here: Conference archive > ICoITiM 2017 > Development of the Algorithm of Polish Language Film Reviews Preprocesing
Wersja polska

Development of the Algorithm of Polish Language Film Reviews Preprocesing

Nina Rizun, Yurii Taranenko


The algorithm and the software for conducting the procedure of Preprocessing of the reviews of films in the Polish language were developed. This algorithm contains the following steps: Text Adaptation Procedure; Procedure of Tokenization; Procedure of Transforming Words into the Byte Format; Part-of-Speech Tagging; Stemming / Lemmatization Procedure; Presentation of Documents in the Vector Form (Vector Space Model) Procedure; Forming the Documents Models Database Procedure. The experiments of this algorithm conduction on the test sampling of reviews analysis was performed and the main conclusion was formulated.

Full text


  1. Vanyushkin A. S., Grashchenkov L.A. (2016); Methods and algorithms extracted keywords. New information technologies for automated. № 19.
  2. Rizun N., Kapłanski P. & Taranenko Y. (2016); The Method of a Two-Level Text-Meaning Similarity Approximation of the Customers' Opinions. Czasopismo „Studia Ekonomiczne – Zeszyty Naukowe". Uniwersytet Ekonomiczny w Katowicach. № 296, pp.64-85.
  3. Rizun N., Kapłanski P. & Taranenko Y. (2016); Development and Research of the Text Messages Semantic Clustering Methodology, The Third European Network Intelligence Conference (ENIC 2016). Proceedings. DOI: 10.1109/ENIC.2016.33. In book: 2016 Third European Network Intelligence Conference, Publisher: ENIC.2016.33, pp.180-187.
  4. Kapłanski P., Rizun N., Taranenko Y. & Seganti A. (2016); Text-mining Similarity Approximation Operators for Opinion Mining in BI tools. Proceeding of the 11th Scientific Congerence "Internet in the Information Society-2016", Publisher: University of Dąbrowa Górnicza, Editors: Maciej Rostancki, Piotr Pikiewicz, Krystian Mączka, Paweł Buchwald, pp.121-141.
  5. Feinerer, I., Hornik, K. & Meyer, D. (2008); Text mining infrastructure in: "R Journal of statistical software." 25(5). American Statistical Association.
  6. Segalovich I. (2003); A fast-morphological algorithm with unknown word guessing induced by a dictionary for a web search engine. MLMTA-2003.
  7. Koreniu T., Laurikkala Y, Järvelin K. & Juhola M. (2004); Stemming and Lemmatization in the Clustering of Finnish Text Documents. CIKM'04, November 8-13, Washington, DC, USA.
  8. Alkula, R. (2001) From plain character strings to meaningful words: Producing better full text databases for inflectional and compounding languages with morphological analysis software. "Information Retrieval" № 4, pp.195-208.
  9. Weiss D. & Stempelator A. (2013); Hybrid Stemmer for the Polish Language.
  10. Lewandowska-Tomaszczyk B., James Melia P. (1997) PALC'97: Practical Applications in Language Corpora, pages 496–505, Łódź University Press.
  11. Hajnicz, E. & Kupść, A. (2001); Przegląd analizatorów morfologicznych dla języka polskiego. IPI PAN Research Report 937, Institute of Computer Science, Polish Academy of Sciences, Warsaw.
  12. Vetulani, Z. & Obrębski, T. (1997); Morphological tagging of texts using the lemmatizer of the 'POLEX' electronic dictionary. In: Lewandowska-Tomaszczyk, B. & Melia P. J. (Eds.) Practical Applications in Language Corpora, Proceedings, University Press, pp.
  13. Obrębski, T. & Stolarski, M. (2006); UAM text tools – a flexible NLP architecture. In Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006, pages 2259-2262, Genoa. ELRA
  14. Miłkowski, M. (2010); Developing an open-source, rule-based proofreading tool. Software: "Practice and Experience". 40(7): pp. 543-566.
  15. Wolinski, M, Miłkowski, M., Ogrodniczuk, M., Przepiórkowski, A. & Szałkiewicz, L. (2010) PoliMorf: a (not so) new open morphological dictionary for Polish.
  16. Przepiórkowski A. & Wolinski, M. (2003); The unbearable lightness of tagging: A case study in morphosyntactic tagging of Polish. In Proceedings of the 4th International Workshop on Linguistically Interpreted Corpora. EACL 2003, pp. 109- 116.
  17. Radziszewski A. & Maziarz M. (2011); Developing free morphological data for Polish, “Cognitive Studies / Etudes Cognitives” (lista ERIH), 11.
  18. Rizun N., Taranenko Y. & Waloszek, W. (2017); The Algorithm of Modelling and Analysis of Latent Semantic Relations: Linear Algebra vs. Probabilistic Topic Models. Knowledge Engineering and Semantic Web. Knowledge Engineering and Semantic Web, Publisher: Proceedings of the 8th International Conference (KESW 2017), pp.53-68. DOI: 10.1007/978-3-319-69548-8 5.

Back to list


« prev  |   top  |  



In technical cooperation with:


Page by: A.Jarzęcki | Powered by CMSimple | Login